Map of Extreme Weather in 2012

2012 was a year of extreme weather events, with record heat waves, significant drought across the Southern and Western States, and major wildfires. A map posted by the Natural Resources Defense Council (NRDC) allows users to watch the events on the national map over the course of the year.

The map also allows user to look at a summary of extreme weather events at the state level.

2013-06-09_NRDC extreme weather map_Fullscreen capture 692013 23624 PM

According to the NRDC, in 2012 California experienced:

  • Record-breaking heat in 15 counties
  • Record-breaking snow in 5 counties
  • Record-breaking precipitation in 18 counties
  • 102 large wildfires

The website lets users see the specific records set (for example, the records for monthly highest maximum temperature below) and the previous record.

2013-06-09_NRDC extreme weather map_Fullscreen capture 692013 24150 PM

For those (like me) who like to know the source of the data, the map was based on data from the National Oceanic and Atmospheric Administrations’s National Climatic Data Center.

Cool Roofs – Melvin Pomerantz

5

In Berkeley, we are fortunate to have such events as Science at the Theater, where Lawrence Berkeley National Lab researchers give talks on their work at the Berkeley Repertory Theatre. The lectures are free and get a pretty sizeable audience.

On Monday, October 11, I was in the audience as researchers from Lawrence Berkeley National Laboratory (and the beloved Art Rosenfeld) gave a presentation titled “Cool Roofs, Cool Cities.” The post below consists of Part 1 of my record of the presentation – Melvin Pomerantz gives an introduction to the heat island effect and cool roofs. All portions are included in chronological order.

An ellipsis (…) indicates that I was not able to capture the words or thoughts skipped. The presentation is transcribed as accurately as possible – punctuation choices are mine. I also added any images.

– – –

What I’m going to talk about is a very familiar experience to a lot of you – when you go into the center of a city, it’s a lot warmer … That effect, namely the temperature … tends to be anywhere from 5-7 deg F warmer in the city than outside the city …

Image Credit: Wikimedia Commons

The heat has not only an effect of causing discomfort, but has economic effects, too … Looking at some SMUD data … went up to about 107 degrees that day … As the day goes on, it gets hotter and hotter, and the demand for electricity gets higher and higher … finally it cools down and people turn off their air conditioners a little bit. … To get this power, you need about 5.5 power plants, but the power used in January is much less, so the power company has to have in reserve all these power plants. So there is capital involved in having these in reserve … And the ones in reserve are generally the oldest, most polluting plants … so it’s an unfortunate effect …

Another effect that goes on is that when things are very hot, there are actually deaths … Chicago in 1995, there were 739 deaths attributed to the heat wave – almost all occurred on the top floor of buildings with black roofs …

So what can we do about it? … How is the air heated in the first place? The sun does not heat the air directly … Sunlight travels very well through the atmosphere … There are opaque surfaces – the light comes in from the sun and strikes a surface … some stays in the surface and heats the surface, then the air comes along and touches the surface and heats up … The surface is acting as a converter, so if we can modify the surface, we can get a handle on it … If you have a building underneath a roof, that heat travels into the building, then you have to run on the air conditioning. …  Also pavements suffer if it gets too hot … the pavement needs to handle the deterioration that the heat causes … …

One way to look at this is to look at the solar reflectance … If you have no light coming out, it’s black … if it all comes out, it’s very bright. If the light is not all caught by the material, it has a higher solar reflectance, and it’s cooler … If you decrease the solar reflectance, the temperature can rise 80-90 degrees F over the ambient air – and you don’t want that … …

There’s another feature, which is that once the surface is warm, it radiates … there are gases in the air which absorb this thermal radiation, and it’s like a blanket. It’s blocked by the gases in the atmosphere… this is the atmospheric greenhouse effect. If we can affect the light from sticking in the surfaces, we reduces the greenhouse effect, too, and keep the planet a bit cooler …

Image credit: Wikimedia Commons

What can we make cooler? … Looking again at Sacramento … about 39% of what we could see from the sky was pavements … … … If we reflect sunlight, it mostly passes back out of the atmosphere without heating the air…

– – –

Part 2 is posted here. Part 3 is posted here. Part 4 is posted here.

– – –

Chris Field – Director of Dept. of Global Ecology

2

On Friday (10/1) and Saturday (10/2), I was in the audience at the Berkeley Repertory Theatre in Berkeley, California, as Chris Field, Director of the Carnegie Institution’s Department of Global Ecology at Stanford University, gave a presentation titled “The Velocity of Climate Change: 2010”.

The post below consists of selected snippets of my record of the presentation. All portions are included in chronological order.

An ellipsis (…) indicates that I was not able to capture the words or thoughts skipped. The presentation is transcribed as accurately as possible – punctuation choices are mine.

– – –

… What I want to do is talk about pace … in four different contexts … We already know enough to make smart decisions and the challenge is how we go from at atmosphere of doubt to one where we can really make decisions … … The idea of a threshold isn’t necessarily the best way to think of this issue – there are some places that have probably already passed their threshold … we need to instead think of risk management …

Risk = probability x consequence

In terms of the calculation of risk, there’s risk in high-probability events, but also risk in low-probability events that happen over a wide spectrum … Steve Schneider compared climate change to playing with loaded dice …

… … …

Today, I want to talk about the velocity of climate change in terms of the rate of climate change, the history of understanding climate change, the velocity required for ecosystem and societal responses (adaptation), and commitments to future changes.

The warming of the climate system is unequivocal … there is some indication that the pace is increasing … What we do in the future makes a huge difference … It’s really striking that there’s still a tremendous amount of uncertainty about where we’ll wind up … We can see a very wide range between the low end and the high end of temperature impacts … We need research into coping and adaptation strategies …

There is now more thinking about climate change impacts in the context of risk … fire in the western United States … risk of extreme events (2003 heat wave in Western Europe) …

There is also thinking about velocities of ecosystems on the ground … the plants and animals that are best at moving and taking advantage of climate change are the weeds and pests …

… … …

… We are not looking at consequences of a century or two of climate change, but essentially fixed changes … The inertia in the system is really dramatic … The Hoover Dam was completed in 1936, and we are still using it … When we’re thinking of setting up energy infrastructure for the future, we need to remember that the infrastructure lasts for a long time. We’re building the energy infrastructure for the next century now … There are significant emissions commitments from existing infrastructure … In China, much of the infrastructure is new and won’t be retired very fast. In the United States, we have mostly old infrastructure, so the committed emissions could drop rapidly. This type of analysis gives us a sobering picture of the amount of climate change we can’t avoid …

In looking at where the missions are coming from, it’s useful to look per country and per capita … the United States still has fives times the emission per capita as China …

… … …

In terms of the pace of human responses to climate change, there are many reasons we might want to delay: to avoid unnecessary expenditures, to allow natural progress with technology development, and to start from a position of greater wealth … But there are questionable economics in the study of rapid emissions reduction. In a paper in Nature (Wigley et al, 1996), it was concluded that if you want to optimize economically, you would stay with “business as usual” but then deploy technologies aggressively. But the paper didn’t really discuss the implications of delay. Delay doesn’t mean do nothing – it has to mean get prepared with investment and readiness to aggressively deploy technology …

Is the technology available? Humanity already possesses the fundamental scientific, technical, and industrial knowledge now to solve the carbon and climate problem for the next half century …

– – –

This exchange was followed by a question and answer session with the audience.

– – –

Assorted Links

Parts of California experience a record heat wave – Los Angeles had its highest recorded temperature of 113 deg F yesterday.

Schwarzenegger lashes out at the companies trying to get rid of California’s carbon regulation law,  AB 32.

Meg Whitman has now stated that she is against Prop 23 but would still suspend AB 32 for a year if elected.

– – –